
Point clouds in PostgreSQL:Point clouds in PostgreSQL:
store and publishstore and publish

1

This talk discusses point clouds, the Pointcloud extension for storing point clouds in PostgreSQL, and the LOPoCS
lightweight server for streaming point clouds on the web.

Éric LemoineÉric Lemoine
Developer @ Oslandia

FOSS4G developer and enthusiast since 2007

eric.lemoine@oslandia.com

@elemoine
@erilem

2

My name is Éric Lemoine. I work at Oslandia. And I've been working in the FOSS4G field since 2007.

mailto:eric.lemoine@oslandia.com
https://github.com/elemoine
https://twitter.com/erilem

Oslandia Oslandia
Oslandia provides service on open-source software

GIS
3D
DATA

3

Oslandia is an open-source company working on GIS, 3D and Data Science. QGIS, PostGIS and the iTowns 3D WebGL
framework are examples of software components we are working on.

Point clouds!Point clouds!

4

Let's talk about point clouds in general first!

Point cloudsPoint clouds
« A point cloud is a set of data points in space. »

source: wikipedia

5

A point cloud is just a set of data points in space. Nothing more. Point clouds provide a way to represent objects of our
environment. A church and streets around it in the previous slide, and a donut here.

https://en.wikipedia.org/wiki/Point_cloud

Point cloudsPoint clouds
Generally produced by 3D scanners (LiDAR)
Can also be created using Photogrammetry

6

What can produce point clouds? Point clouds are generally produced by 3D scanner. This is the LiDAR (Light Detection
And Ranging) technology. Point clouds can also be produced using photogrammetry techniques (through homolog
points).

LiDARLiDAR
Terrestrial, Airborne, Mobile, Unmanned

7

There are several types of LiDAR acquisitions: Terrestrial (fixed tripods), Airbone (planes or helicopters), Mobile (Google
Car like), and Unmanned (drones).

Many applications!Many applications!
Create Digital Elevation Models (DEMs)
Create 3D models
Detect objects and obstacles
etc.

8

Point clouds have a wide range of applications. Examples include creating Digital Evelation Models, Digital Surface
Models, 3D models, and detecting objects and obstacles. Autonomous cars use LiDAR! For the creation of 3D models,
3D surfaces are derived from point clouds.

Point clouds in PostgreSQLPoint clouds in PostgreSQL

9

Now let's discuss the Pointcloud extension for PostgreSQL.

PointcloudPointcloud
"PostgreSQL extension for storing point cloud data"

https://github.com/pgpointcloud/pointcloud

10

The Pointcloud extension allows storing point cloud data in PostgreSQL databases. Pointcloud is open-source and
available on GitHub. It's easy to build and install, and it's well documented.

https://github.com/pgpointcloud/pointcloud

PointcloudPointcloud
Initially developed by Paul Ramsey (funded by
Natural Resources Canada)
Now developed and maintained by Oslandia and IGN

11

The initial development of Pointcloud was funded by Natural Resources Canada, and done by Paul Ramsey, one of the
main PostGIS developers. It is currently developed and maintained by Oslandia and IGN (mostly).

GoalsGoals
Storing LiDAR data in PostgreSQL
Leveraging that data for analysis in PostGIS

12

Storing LiDAR data in PostgreSQL enables all sort of analysis, by using PostGIS and Pointcloud together. For example
determining all the points that are within a polygon is both a very easy and very fast operation.

Why not use PostGIS?Why not use PostGIS?
 Column | Type
-----------------+------------------
 id | integer
 geom | geometry(PointZ)
 intensity | double precision
 returnnumber | double precision
 numberofreturns | double precision
 classification | double precision
 scananglerank | double precision
 red | double precision
 green | double precision
 blue | double precision

13

By the way, why not using PostGIS instead of creating a specific extension? PostGIS has a PointZ geometry type that
could be used, hasn't it?

Why not use PostGIS?Why not use PostGIS?
One point per row means billions of rows
Does not work!

14

Because point clouds may have billions of points, which would mean billions of database rows, which wouldn't work.

Patches of pointsPatches of points
Organize the points into patches
→ Millions of rows instead of billions

 Column | Type
--------+------------
 id | integer
 pa | pcpatch(1)

15

For that reason Pointcloud organizes points into patches. A patch typically includes several hundreds or several
thousands points, which translates into millions of rows rather than billions of rows. This is still big, but manageable.

Two typesTwo types
PcPoint(pcid)

PcPatch(pcid)

16

Pointcloud actually defines two new types: PcPoint and PcPatch. PcPatches are collections of PcPoints. PcPoints are
packings of point dimensions (X, Y, Z, …). Dimensions are packed in byte arrays.

Use PointcloudUse Pointcloud
CREATE EXTENSION pointcloud;
CREATE EXTENSION postgis; -- optional
CREATE EXTENSION pointcloud_postgis; -- optional

17

Enabling Pointcloud in a database is done the way as enabling PostGIS.

Use PointcloudUse Pointcloud
 Schema | Name | Type
--------+--------------------+----------
 public | geography_columns | view
 public | geometry_columns | view
 public | pointcloud_columns | view
 public | pointcloud_formats | table
 public | raster_columns | view
 public | raster_overviews | view
 public | spatial_ref_sys | table

18

After enabling Pointcloud in a database the pointcloud_colums view and the pointcloud_formats table are added to the
database. The poincloud_colums view includes information about all the PcPoint and PcPatch columns that exist in the
database. The pointcloud_formats table includes XML documents that define how dimensions are encoded in PcPoints.

SchemaSchema
 pcid | srid | schema
------+------+---
 1 | 4326 | <?xml version="1.0" encoding="UTF-8"?> +
 | | <pc:PointCloudSchema xmlns:pc="http://pointcloud.org/schemas/PC/1.1" +
 | | xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> +
 | | <pc:dimension> +
 | | <pc:position>1</pc:position> +
 | | <pc:size>4</pc:size> +
 | | <pc:description>X coordinate as a long integer. You must use the +
 | | scale and offset information of the header to +
 | | determine the double value.</pc:description> +
 | | <pc:name>X</pc:name> +
 | | <pc:interpretation>int32_t</pc:interpretation> +
 | | <pc:scale>0.01</pc:scale> +
 | | </pc:dimension> +
 | | <pc:dimension> +
 | | <pc:position>2</pc:position> +
 | | <pc:size>4</pc:size> +
 | | <pc:description>Y coordinate as a long integer. You must use the +
 | | scale and offset information of the header to +
 | | determine the double value.</pc:description> +
 | | <pc:name>Y</pc:name> +
 | | <pc:interpretation>int32_t</pc:interpretation> +
 | | <pc:scale>0.01</pc:scale> +
 | | </pc:dimension> +
 | | <pc:dimension> +
 | | <pc:position>3</pc:position> +
 | | <pc:size>4</pc:size> +
 | | <pc:description>Z coordinate as a long integer. You must use the +

19

This is an example of an PointCloudSchema XML document.

SELECT pa FROM patches LIMIT 1;

 0101000000020000000900000002100000000400000060CEFFFFBC9A78560000
(1 row)

20

An SQL query that selects a patch (PcPatch) returns a sort of WKB (Well Known Binary) string representing the patch.

SELECT PC_AsText(pa) FROM patches LIMIT 1;

 {"pcid":1,"pts":[[-126.99,45.01,1,0],[-126.98,45.02,2,0],[-126.9
(1 row)

21

The Pointcloud extension provides functions for manipulating points and patches. For example the PC_AsText function
returns a JSON representation of patches.

Working with real dataWorking with real data

22

Let's look at how real point cloud data can be inserted into a PostgreSQL database?

PDALPDAL
https://www.pdal.io/

23

PDAL can be used for that!

https://www.pdal.io/

Load data using PDALLoad data using PDAL
{
 "pipeline": [
 {
 "type": "readers.las",
 "filename":"inrap.las"
 },
 {
 "type": "filters.chipper",
 "capacity": "400"
 },
 {
 "type":"writers.pgpointcloud",
 "connection":"dbname=lopocs host=localhost user=lopocs",
 "schema": "public",
 "table":"inrap",
 "compression":"none",
 "srid":"3946",
 "overwrite":"true",
 "column": "points",
 "scale_x": "0.01",
 "scale_y": "0.01",
 "scale_z": "0.01",
 "offset_x": "831587.0631",
 "offset_y": "6287650.923",
 "offset_z": "30.921565055000002"
 }
]
}

24

This creates a PDAL pipeline whose source is a LAS file and sink is a Pointcloud database table. The filter in between
the source and the sink is a so-called "chipper" filter. The "chipper" filter is responsible for creating patches of points –
400-point patches here.

SELECT count(*) num_patches,
 sum(PC_NumPoints(points)) num_points
FROM inrap;

 num_patches | num_points
-------------+------------
 45952 | 18380597
(1 row)

25

The point cloud has been loaded into PostgreSQL. We can start throwing some SQL at it! The above SQL query just
counts the total number of patches and points.

Visualize in QGISVisualize in QGIS
SELECT id, points FROM inrap

26

Point clouds in PostgreSQL can be displayed in QGIS! As a 2D viewer QGIS actually displays the 2D bounds (X/Y
bounds) of patches. This is actually very useful for testing and debugging.

Visualize in QGISVisualize in QGIS
SELECT id, points, PC_PatchAvg(points, 'red') || ',' ||
 PC_PatchAvg(points, 'green') || ',' ||
 PC_PatchAvg(points, 'blue') || ',255' color FROM inrap;

27

We can even add some colors!

v1.1.0v1.1.0
Released the 2018-04-31

New functions include:

PC_Patch{Avg,Max,Min}(p pcpatch, dimname text)

PC_Range(p pcpatch, start int4, n int4)

PC_SetPCId(p pcpatch, pcid int4, def float8 default 0.0)

PC_Transform(p pcpatch, pcid int4, def float8 default 0.0)

PC_BoundingDiagonalAsBinary(p pcpatch)

28

The Pointcloud extension includes many PcPoint and PcPatch manipulation functions. The 1.1.0 version, which was
released the 2018-04-31, brings new functions that are useful both for analysis and visualization.

"Light OpenSource PointCloud Server"

https://github.com/Oslandia/lopocs

29

Interestingly people often want to visualize their data! Oslandia created LOPoCS for that. LOPoCS is not viewer, it's a
light open-source pointcloud streaming server.

https://github.com/Oslandia/lopocs

LOPoCSLOPoCS
Streams point cloud data stored in PostgreSQL
Supports multiple streaming protocols
(Greyhound and 3D Tiles currently supported)
→ works with Potree, Cesium, iTowns

30

LOPoCS is able to stream point cloud data stored in PostgreSQL/Pointcloud. LOPoCS implements existing protocols.
The Greyhound and 3D Tiles protocols are currently supported. This makes LOPoCS works with various point cloud web
viewers, including Potree, Cesium and iTowns.

Greyhound in a nutshellGreyhound in a nutshell
Greyhound is a dynamic point cloud

server architecture that performs
progressive level-of-detail streaming of

indexed resources on-demand

https://greyhound.io/

31

Greyhound is a point cloud data streaming protocol. It was created by Howard Butler and Connor Maning from Hubo,
Inc. It is the protocol used by the Greyhound server.

https://greyhound.io/

Potree/GreyhoundPotree/Greyhound

32

This is a Potree application displaying a point cloud streamed by LOPoCS.

3D Tiles in a nutshell3D Tiles in a nutshell
Speci�cation for streaming massive

heterogeneous 3D geospatial datasets

https://github.com/AnalyticalGraphicsInc/3d-tiles

33

3D Tiles a specification for streaming 3D content. Is is not specific to point cloud data. It can be used to stream building,
trees, point clouds and vector data. It was created by the Cesium team, and has now entered the OGC Community
Standard process.

https://github.com/AnalyticalGraphicsInc/3d-tiles

Cesium/3D TilesCesium/3D Tiles

34

This is a Cesium application displaying a point cloud streamed by LOPoCS.

iTowns/3D TilesiTowns/3D Tiles

35

This is an iTowns application displaying a point cloud streamed by LOPoCS.

MotivationMotivation
Stream point cloud data directly from Postgres
No export/indexing step required
Nice for pre-visualization and prototyping

36

The motivation is to be able to stream point cloud data directly from PostgreSQL, without having to export and index the
data outside the database. In particular this is useful for pre-visualization and prototyping. For serious visualizations
exporting the data from indexed files (3D Tiles for example) will always lead to better performance.

TechnologiesTechnologies
Language: Python 3
Web framework: Flask
Main libraries: , py3dtiles lazperf

37

LOPoCS is written in Python 3. It uses the Flask web framework. It is based on the py3dtiles library (for 3D Tiles) and the
laz-perf library (for Greyhound).

https://github.com/Oslandia/py3dtiles
https://github.com/hobu/laz-perf

LOPoCS FutureLOPoCS Future
Improve the selection of points
Make rendering as good and performant as possible

38

LOPoCS is still a young project. It still required work to improve the selection of points, and provide for a better
rendering. We hope to make LOPoCS better and attract more users and developers in the future.

Thanks!Thanks!

39

